Cooking on the Cloud

An Immutable experience

Ohai!

(Provisioning)
Infrastructure

Context is everything

Moar Context!

What we knew about Hosting!

What we knew about Deploying!

What we knew about Systems!

Tons of Options out there!

Terraform

PROS: CONS:

e Fast development pace e Not Codeable
e Ability to preview actions e Break hard on state changes

Cloudformation

PROS: CONS:

e Major AWS support e Nota DSL

Chef-Provisioning (metal was such a cooler name)

PROS: CONS:

e Chef integration e Coverage of AWS resources
e Codeable (Ruby everywhere!) e Slow development pace (at times)

What we realised about state!

Bet on Chefl

(Provisioning)
With Chef

Concepts on the table!

A whole lot of things!

..Roles! (not the ones you're used to)

Mindera / Untitled project / chef-aws-roles

Source

D master + ¥ ~ | chef-aws-roles / resources /

L
8
8
8
@
8
@
g
g
8
@

database.rb
datacenter.rb
health_check.rb
image.rb
image_housekeeper.rb
immutable_web.rb
machine.rb

nat.rb

openvpn.rb

web.rb

2016-01-14

2016-01-18

2015-12-02

2015-12-04

2015-12-23

2016-01-06

2016-01-14

2015-12-23

2015-11-23

2015-11-25

feat(NA) - Add ability to configure the db storage type as a resource attribute.
Migration of Datacenter provider to class type.

Removed the unhealth action.

Fix aws custom image provider:

Added aws_image_housekeeper provider.

feat(NA) - Support for optional internal load balancer.

feat(NA) - Add ability to configure the default block device.

Make base_image_id for nat required.

Reverted back to compact module/class definitions (on OpenVPN provider)

Change scope of the web provider to allow a way to manage mutable application scenarios.

+ New file

Baking an AMI!

_aws_image "imagefor_#{product_name}" do
region cloud['region']
profile_name cloud['profile_name']
vpc_name cloud['vpc_name']
subnet_name image['subnet_name']
key_name cloud['key_name']
base_image_id imagel['base_options']['ami_name"']
product_name product_name
product_version pipeline_version
cookbook_version cookbook_version
run_list attrs['run_list']

end

N =2

3
4
5
6
.
8
9

Cleaning up an AMI!

Laws_image "imagefor_#{product_name}" do

=2

end

_aws_image_housekeeper product_name do
region cloud['region’]
profile_name cloud['profile_name']
vpc_name cloud['vpc_name']
strategies %w(time number)
days_to_keep 30
number_to_keep 15

end

4
5
6
7

Ww oo

=2
&

=
N =

[y

_aws_immutable_web product_name do
region cloud['region']
profile_name cloud['profile_name']
vpc_name cloud['vpc_name']

Spin up a Web Service!

launch_image image_id

launch_instance_type launch_config['instance_type'l]
launch_options launch_config['launch_options']
launch_inbound_ports launch_config['inbound_ports']

O oo NN UL BB WN

[
[

autoscale_subnet_names autoscalel'subnet_names']

N

=
w

load_balancer_subnet_names load_balancer|['subnet_names']
load_balancer_options load_balancer['load_balancer_options']
available_internally true # create an internal load_balancer

=Y
=Y

route53_zone_name dns['zone']
route53_record_name "tel-service-#{environment}"

cluster_environment environment
health_retry_delay 10
health_retries 30

action :update
end

(Provisioning)
With Jenkins

Let’s kick one of our pipelines!

(Provisioning)
The code

The Image resource! class Chef::Resource::AwsCustomImage < Chef::Resource::|WRPBase

provides :_aws_image

default_action :create
actions :create, :destroy

General required

attribute :region, :kind_of => String, :required => true
attribute :profile_name, :kind_of => String, :required => true
attribute :vpc_name, :kind_of => String, :required => true

Provider specific required
attribute :name, :kind_of => String, :name_attribute => true

attribute :image_id, kind_of: String, default: lazy {
name =~ /"~ami-[a-f@-9]{8}$/ ? name : nil

}

1 v class Chef::Provider: :AwsCustomImage < Chef::Provider: :AwsRolesBaseProvider
action :create do=

The image provider!

private

def create_actione=

def get_image_id=

def destroy_actione

Helpers

def check_for_image_existence(image_name) =
def generate_outpute

def fetch_image_name=

def fetch_machine_options=

def fetch_tagse

def fetch_base_image_id=

def fetch_security_groups_ids=
end

[y

klass Chef::Provider: :AwsRolesBaseProvider < Chef::Provider:
use_inline_resources

def initialize(new_resource, run_context, vpc_exists=true)
super(new_resource, run_context)
with_driver "aws:#{new_resource.profile_name}:#{new_resource.region}"

o U A WN

AwsRolesBaseProvider!

~

@vpc_name = new_resource.vpc_name

© ™

if vpc_exists
@aws_helpers AwsHelpers: :AwsHelpers.new(run_context, @vpc_name)
else
@aws_helpers = AwsHelpers::AwsHelpers.new(run_context)
end
end

def set_vpce

Support "no-operation" mode
def whyrun_supported?=

#
Return the damned value from the block, not whatever weirdness converge_by
normally returns.
#
def converge_by(xargs, &block)
result = nil
super(*args) do
result = block.call
end
result
end

W WwwwwwNNN
U A WNRLRSO WO

w w
N o

def action_handler=
def generate_image_tags(tags = {})=

def generate_tags(tags = {})=
end

AwsHelpers!

T
Describe methods. They don't return an AWS object but rather a AWS Type object.

NN
~N O

N
w oo

%w(route_table subnet security_group).each do |type]|
define_method("describe_ec2_#{type}_by_name") do |name|
filters = [{ :name => 'tag:Name', :values => [name] }]
type_list = send("describe_ec2_#{type}s", filters)

()

2
3
31
3
3

BW N

fail "More then one #{type} called '#{name}' in VPC '#{@t_vpc.vpc_id}'" if type_list.length > 1
fail "No #{type} found with the name '#{name}' in VPC '#{@t_vpc.vpc_id}'" if type_list.empty?
type_list.first
end
end

o

w w w w
(8]

w
o0 ~l

|c1ass Chef: :Resource: :ImmutableWeb < Chef::Resource::LWRPBase
provides :_aws_immutable_web

actions :create,
:destroy,
:update

default_action :create

The immutable_web
resource!

ONOUAWNR

©

provider attributes
attribute :name, :kind_of => String, :name_attribute => true

launch configuration attributes
attribute :launch_image, :kind_of => String, :required => true,
:callbacks => { 'must be a valid AMI id ' => lambda do |id|
1(id =~ /7~ami-[a-f0-9]1{8}$/).nil?
end }

autoscale group attributes
attribute :autoscale_desired_capacity, :kind_of => Integer, :default => 1,
:callbacks => { 'must be > @' => lambda do |desired_capacity|
Chef::Resource: : ImmutableWeb.validate_positive_integer(desired_capacity)
end }

2
21
22

N NN
(S N Y]

optional/configurable attributes
attribute :health_check_run, :kind_of => [TrueClass, FalseClassl], :default => true
attribute :health_check_path, :kind_of => String, :default => '/healthcheck'

w
w N R

attribute :route53_record_name, :kind_of => String,
:default => lazy { immutable_name }

ul

o

attribute :immutable_name, :kind_of => String,
:default => lazy { "#{name.gsub('_', '-')}-#{launch_image.split('-"')[1]}-#{cluster_environment}" }

wWwwwww
'S

0 N

w w
@©

def self.validate_positive_integer(integer)
integer > @
end
end

Provider: :ImmutableWeb < Chef::Provid :AwsRolesBaseProvider
provides :_aws_immutable_web

action :update do=

The immutable_web

create_launch_configuration(resource_name) =
destroy_launch_configuration(resource_name) =

create_load_balancer(resource_name) =
destroy_load_balancer(resource_name) =

create_autoscale_group(resource_name) =
destroy_autoscale_group(resource_name) =

manage_dns(action) =
create_dns=
destroy_dns=

create_security_group_for_launch_confi ion(resource_name) =
destroy_security_group_for_launch_conf ration(resource_name) =

create_security_group_for_load_b ncer(resource_name)
destroy_security_group_for_load_balancer(resource_name) =
link_load_balancer_and_launch_configuration_security_groups(resource_name) =
unlink_load_balancer_and_launch_configuration_security_groups(resource_name) =

get_current_resource_name_by_route53_record_name=
generate_output=

create_security_group(sg_name, inbound_rules = [], outbound_rules = []1)=
destroy_security_group(sg_name) =

run_healthcheck=

(Provisioning)
Results

What we did learn over the past year!

(Provisioning)
Done With Jenkins?

@miguelenf

(Provisioning)
Questions?

