
VCs on line 1

Scaling under pressure
with

Chef, Packer and Terraform

Opex Founders
Sanju Burkule & Gunanand Nagarkar

 15-20 years Global
Experience

(US, Europe, India)

Monitoring &

infrastructure domain

R&D background

Who are we: Uchit Vyas
6 years of exciting experience

Infrastructure automation domain

Leading Cloud Infrastructure
automation in Opex Software

Introduction

Single metric we measure: Speed with correctness

Mission: Automate IT. Create Time

Focus: SAAS applications

SAAS Startup Dream
Scaling with SPEED

How to make this happen, technically?
Images: 4actionmarketing.net, dreamstime.com, thenextweb.com

Pressure from investors

How to make this happen, technically?
Images: startupinitiative.com

SAAS is value: Step 1 of 3

Clear value is delivered

SAAS is value: Step 2 of 3

Clear value is delivered

Onboarding new customers rapidly

SAAS is value: Step 3 of 3

Clear value is delivered

 Onboarding new customers rapidly

Upgrade fast, maintain lead,
make value irresistible

Mortality Rate

Images: jeepneymanilaph.files.wordpress.com

Execution Problems

 All good

Execution Problems

 All good

 Harden the OS skill not available immediately
 Automate app deploy/cfg after thought
 Automate Testing fully after thought

Execution Problems

 All good

 Harden the OS skill not available immediately
 Automate app deployment after thought
 Automate app configuration after thought

 Microservices independently upgradable?
 Lead starting to lose speed, competition!

Images: avopress.com, animationmagazine.net, thenextweb.com

1412/05/15

DevOps + Strong Ops

D
ev

Test

O
ps

15

Transform test automation for DevOps

Strong Ops to scale

Helpdesk Monitoring Configuration
Management

Auto-Self
healing

Synthetic
Monitoring Log analytics

Good News

OS Hardening: Why is it imp?
protecting IP

unfair competition

cybersecurity

private data

direct or indirect

attacks via cloud

President Barack Obama delivers remarks at the Business Roundtable offices in Washington
September 16, 2015.

OS Hardening
Use Chef templates and Terraform

Include following in server configuration definition
Security Rules, Password policies,
Secure SSH, Compliance policy
Important agents (AV, monitoring)

 Use “Chef-Vault” for storing secrets

Sample code: login definition
template '/etc/login.defs' do

 source 'login.defs.erb'

 mode '0444'

 owner 'root'

 group 'root'

 variables(

 additional_user_paths: node['env’] …
)

end

Sample code: erb file
'sample.erb'

<% if @port != 80 -%>

 Listen <%= @port %>

<% end -%>

Two simple, but powerful concepts
a) Expression evaluation
b) Variable value replacement

Sample code: login definition
variables(

 password_max_age: node['auth']['pw_max_age'],

 password_min_age: node['auth']['pw_min_age'],

 login_retries: node['auth']['retries'],

 login_timeout: node['auth']['timeout'],

 chfn_restrict: '', # "rwh"

 allow_login_without_home: node['auth']

['allow_homeless'],

…
)

Quality gates: Serverspec

High speed lab creation
Terraform is parallelized

Auto-sequencing based on graphs

Terraform can integrate with any layer of the
stack

Lab setup on pre-existing servers, provisioning
servers from scratch - both are supported

Speed of provisioning
Why we chose terraform for high-speed scaling

Number of Machines Chef-metal Terraform

10 2.7 minutes 1.20 minutes

30 3.9 minutes 3.08 minutes

40 5.6 minutes 3.36 minutes

60 9.4 minutes 7.08 minutes

100 15.2 minutes 7.41 minutes

Distributing load elegantly

Next few slides explain the code.
Key highlighted portions are in a red rectangle

Use cases 1: Synthetic monitoring
Use case 2: Load balancing across all regions in a
cloud

How to scale across AZs? How to scale across clouds?

.tf Provisioning (AWS multi AZs)

provider "aws" {
 region = "us-west-2"
 access_key = "XXXXXXX"
 secret_key = "XXXXXXXXX"
}ia

variable "region"
{
 default = "us-west-2"
}
variable "region_az" {
 default = {
 "us-east-1" = "us-east-1a,us-east-1c,us-east-1d,us-east-1e"
 "us-west-1" = "us-west-1a,us-west-1b,us-west-1c"

 "us-west-2" = "us-west-2a,us-west-2b,us-west-2c"
 "eu-west-1" = "eu-west-1a,eu-west-1b,eu-west-1c"
 "eu-central-1" = "eu-central-1a,eu-central-1b"
 "ap-southeast-1" = "ap-southeast-1a,ap-southeast-1b"
 "ap-northeast-1" = "ap-northeast-1a,ap-northeast-1b,ap-northeast-1c"
 "ap-southeast-2" = "ap-southeast-2a,ap-southeast-2b"
 "sa-east-1" = "sa-east-1a,sa-east-1b,sa-east-1c"
 }
}

Variables for AZs and AMIs

Lets use this region to start

Region based AZ map
variable "region_az" {
 default = {
 "us-east-1" = "us-east-1a,us-east-1c,us-east-1d,us-east-1e"
 "us-west-1" = "us-west-1a,us-west-1b,us-west-1c"

 "us-west-2" = "us-west-2a,us-west-2b,us-west-2c"
 "eu-west-1" = "eu-west-1a,eu-west-1b,eu-west-1c"
 "eu-central-1" = "eu-central-1a,eu-central-1b"
 "ap-southeast-1" = "ap-southeast-1a,ap-southeast-1b"
 "ap-northeast-1" = "ap-northeast-1a,ap-northeast-1b,ap-northeast-1c"
 "ap-southeast-2" = "ap-southeast-2a,ap-southeast-2b"
 "sa-east-1" = "sa-east-1a,sa-east-1b,sa-east-1c"
 }
}
variable "ami"
{
 default = ...

used in lookup

variable "ami"
{
 default =
{
 "description" = "Ubuntu server 14.04 ami id"
 "us-west-1" = "ami-df6a8b9b"

 "us-west-2" = "ami-5189a661"
 "us-east-1" = "ami-d05e75b8"
 "eu-west-1" = "ami-47a23a30"
 "eu-central-1" = "ami-accff2b1"
 "ap-northeast-1" = "ami-936d9d93"
 "ap-southeast-1" = "ami-96f1c1c4"
 "ap-southeast-2" = "ami-69631053"
 "sa-east-1" = "ami-4d883350"
 }
}

Region based Ubuntu AMI map

resource "aws_instance" "web" {
 ami = "${lookup(var.ami, var.region)}"
 instance_type = "${var.instance_type}"
 count = "${var.servers}"
 availability_zone =
 "${element(split(",",lookup(var.region_az,
var.region)),
 count.index%length
 (split(",",lookup(var.region_az, var.
region))
))}"

}

Resource declaration

resource "aws_instance" "web" {
 ami = "${lookup(var.ami, var.region)}"
 instance_type = "${var.instance_type}"
 count = "${var.servers}"
 availability_zone =
 "${element(split(",",lookup(var.region_az,
var.region)),
 count.index%length
 (split(",",lookup(var.region_az, var.
region))
))}"

}

Scaling and iterating

Math library added from
terraform v0.4
Simulating iteration

Scaling to 100s of servers

Multi-cloud distribution

Step 1
Creating an image

for each cloud

Step 2
Using that image in

the code that we
just saw

Creating image using Packer
 "provisioners": [{
 "type": "shell",
 "inline": [
 "sleep 30",
 "sudo apt-get update",
 "sudo apt-get install -y redis-
server"
]
 }] Provisioning Redis server

Strong Ops - Chef provisioner
 "provisioners": [{
 "type": "chef-client",
 "server_url”: “https://mychefserver.com/”
 }]

Cookbooks and Recipes:
Helpdesk, monitoring server, monitoring clients, antivirus
agents, auto-healing servers, analytics data couriers...

Using Chef client-server

https://mychefserver.com/

App context: Data bags

Creating image using Packer
 "builders": [{
 "type": "amazon-ebs",
 "access_key": "{{user `aws_access_key`}}",
 "secret_key": "{{user `aws_secret_key`}}",
 "region": "us-east-1",
 "source_ami": "ami-de0d9eb7",
 "instance_type": "t1.micro",
 "ssh_username": "ubuntu",
 "ami_name": "packer-example {{timestamp}}"
 },

Build in Amazon Cloud

Same code for multi-cloud
 "builders": [{
 "type": "amazon-ebs",
 "access_key": "{{user `aws_access_key`}}",
 "secret_key": "{{user `aws_secret_key`}}",
 "region": "us-east-1",
 "source_ami": "ami-de0d9eb7",
 "instance_type": "t1.micro",
 "ssh_username": "ubuntu",
 "ami_name": "packer-example {{timestamp}}"
 },

 {

 "type": "digitalocean",
 "api_token": "{{user `do_api_token`}}",
 "image": "ubuntu-14-04-x64",
 "region": "nyc3",
 "size": "512mb"
 }],

Build in Amazon Cloud Build in Digital Ocean Cloud

Beautiful multi-color output
amazon-ebs output will be in this color.
digitalocean output will be in this color.

==> digitalocean: Creating temporary ssh key for droplet...
==> amazon-ebs: Prevalidating AMI Name...
==> amazon-ebs: Inspecting the source AMI...
==> amazon-ebs: Creating temporary keypair: packer 55f6c5e5-2b50-c8c3-5e37-7d246b6f0bca
==> amazon-ebs: Creating temporary security group for this instance...
==> amazon-ebs: Authorizing access to port 22 the temporary security group...
==> amazon-ebs: Launching a source AWS instance...
==> digitalocean: Creating droplet...
==> digitalocean: Waiting for droplet to become active...

Pilot of great idea - clear value delivered - all good
Onboarding new customers rapidly without sacrificing quality

Harden the OS - chef-templates, packer, Terraform
Automate app deployment - Terraform + Chef
Automate app configuration - Terraform + Chef + Data bags

Pivot fast, maintain the lead, make value irresistible
DevOps for building new features fast - Adopt DevOps early
Upgrade customers DevOps pipeline + Roles + Environments

Hope this helps!

The 4th question in daily agile scrums that was never asked

4th question: Are you blocking Ops?

Meaning:
a) Are there any new binaries created/deleted?
b) Are there any configuration files that changed?
c) Are there any configuration attributes that changed?

Why DevOps projects fail

Recap, takeaway
Easy to code infrastructure
Easy to replicate infrastructure
Easy to distribute infrastructure across AZs
Easy to balance infrastructure across regions
Easy to balance infrastructure across clouds,countries
Easy to integrate with other apps
The 4th scrum question

Opex forecast: Next few years
Cheaper, stable, scalable, elastic infra needed by

millions of businesses to win
&

Opex is poised to provide innovative solutions

Opex Software Thanks You

AUTOMATE IT. CREATE TIME

