
Extended update procedure

Ideas and thoughts around it

Based on my post in CFEngine blog called

Extending the CFEngine Policy Update Procedure



About me
● jurica.borozan@gmail.com
● https://juricaborozan.blogspot.com
● https://github.com/jborozan/cfengine-repository/
● https://cfengine.com/company/blog-detail/extending-the-cf

engine-policy-update-procedure
● Google+ Jurica Borozan, twitter @juricaborozan

mailto:jurica.borozan@gmail.com
mailto:jurica.borozan@gmail.com


Masterfile library update procedure
● It is reliable and optimized process 

for distribution of policy files to the 
clients – copies all files from hub 
masterfiles to clients inputs 
directory

● In heterogenous computing 
environment, coping the same 
content to all clients might be 
undesired (or just difficult to 
develop, test and scale) 



Questions prior developing this 
procedure

● How to improve and optimize distribution of policy files
● How to stay compliant/do minimal change to standard 

master library
● How to ease complexity of policy files content
● How to improve development and test processes
● How to support versatility of computer systems
● How to prepare deployment or movement to cloud 

infrastructure



This procedure
● Is using „autorun“ feature on CFEngine clients
● Is implemented with 2 extra policy files, one for clients update process and 

one optional for hub!
● Stays “compliant” with update procedure of mastefiles policy framework
● Requires minimal changes to the files of masterfiles policy framework – (in 

future possibly none)
● Uses separate or secondary repository on the hub, which is different from 

masterfiles (and not inside)
● Relies on improved JSON support in CFEngine and it recommends concept 

of separation executable code from data



Tagging
● This procedure relies on usage of tags
● Tags are flexible way to mark computing 

resources
● They are not limited by number or format, 

there can be as many as we wish (but do 
not exaggerate)

● They enable distinguishing and grouping 
of computing resources (web, db, app1, 
app2, etc.) - so it simplifies orchestration

● IP address and hostname are tags too



Using tags on hub
● Inside secondary repository there shall be set of 

subdirectories named after tags
● Obviously tag names shall be unique just like subdirectory 

names
● Each subdirectory shall contain set of policy files that will 

be fetched by clients
● When number of policy files grows it is recommended to 

have some automated way to maintain these 
subdirectories and files in them



Using tags on clients 
● Each CFEngine client fetches policy files from masterfiles 

directory and from tag named subdirectory(ies) in 
secondary repository

● All the policy files from those subdirectory(ies) go to the 
autorun subdirectory inside inputs directory

● Limitation for the policy files names is that they shall be 
unique to avoid overwriting

● CFEngine client re-reads tags upon every run – so it could 
change (dynamically) appliance of computing resources 
on the run



Assigning tag to clients
● Obviously tags could be placed inside some file – which is 

located outside masterfiles and inputs directories
● Or they could be fetched from somewhere via curl, wget 

or CFEngine get_url (e.g. get meta data in AWS or 
Openstack)

● Which depends heavily on infrastructure and type of 
services it provides 



Policies and policy data
● Separation of policies and data is recommended 
● This improves development and testing of policy files
● It could simplify handling platform differences
● I recommend to have each agent bundle in separate file 

and to have correspondingly named data file 
(JSON/YAML,) which is read at beginning

● Whole feature resembles CFEngine design studio but it 
tries to be simpler

● This is optional – extension works with any type of policy 
files containing bundles marked with “autorun” metatag



Policies and policy data (2)



Policies and policy data (3)
● Optionally adding some naming conventions might 

improve things even more
● Nouns like mysql_*.cf and firewall_*.cf describe what is all 

about
● Verbs like *_install.cf and *_init.cf do ease understanding 

what is supposed to happen
● It is better to avoid putting to much functionality inside 

policy file – since it could become difficult to test and 
debug



Client side implementation
● There are 2 files: 
− $(sys.inputdir)/jb_update_policy3.cf
− $(sys.workdir)/node.tags

● Update policy file reads tags from second file each time 
cf-agent runs it

● Benefits on such dynamic behaviour is flexibility: adding 
and removing tags controls fetching policy files on 
updates

● Hostname and IP address are included into tags 
automatically



Client side implementation (2)
● In the first phase, update process goes as usual – 

standard CFEngine procedure fetching content of 
mastefiles directory and coping it to inputs

● Second phase is defined by extended update policy script 
and it tries to fetch content of subdirectories (named after 
tags) and copy them to autorun subdirectory

● Extended update policy script uses timestamps to check 
changes and prevent to much network traffic on hub



Client side implementation (3)



Hub side implementation
● Option of manually maintaining secondary repository 

directory structure is not recommended
● Repeated coping of policy files and their data to 

subdirectories is not effective and it is error prone 
procedure

● CFEngine does not follow symbolic links but using hard 
links might be useful

● I developed another policy file to maintain secondary 
repository subdirectories and their content using hard 
links



Hub side implementation (2)
● There are some rules how my hub script link the files:
− There can be more source locations with policy files
− If the filename is prefixed with tag name, that one shall 

be linked to certain subdirectory but without prefix – 
this enables having tag specific policy and data files

● All other non desired links and files must be removed from 
subdirectories in repository

● Timestamp shall be maintained to indicate changes of the 
files and lessen network traffic



Hub side implementation (3)



Hub side implementation (4)



Managing secondary repository and 
distribution of policy files - schema



Cloud appliance
● Question with cloud appliance is whether to use application prepared image 

(e.g. for mysql, nginx) or CFEngine prepared image which later on takes care 
of rest 

● CFEngine is “lite” – which makes it quite applicable inside prepared images 
● Obviously growing number of computer resources in cloud will require some 

kind of configuration management or orchestration tool
● CFEngine prepared images or generic ones could be setup for any purpose – 

which is practical during development where changes are the rule, not 
exception



Cloud appliance (2)
● Most efficient would be to start with some image that has 

CFEngine installed on it
● But using user data file, CFEngine can be easily installed 

at boot time (i.e. AWS, Openstack)
● And user data file could be also used to write tags in the 

tags file too
● Alternative way is to assign tags to an instance would be 

to fetched them using curl, wget or CFEngine get_url() 
function during runtime



Cloud appliance (3)
● Using Web based interface is good but tasks around 

computer resources in cloud shall be automated
● This implies using API or CLI for management (and GUI 

for control)
● E.g. Think of replicating some computer system of 100 

nodes regionally (or for development, test and production)
● CFEngine can help orchestrating resources
● E.g. I use CFEngine to create, run, control and tag 

computing resources on AWS via CLI



Container appliance
● Similar to cloud appliance question is where to put 

CFEngine client: inside or outside container



Container appliance (2)
● Depends a lot on someone’s skills to prepare container 

images (e.g. dockerfile) and skills to use CFEngine
● Usual single appliance of container makes CFEngine 

more applicable as container controller on the host
● Putting CFEngine inside container makes sense in cases 

when you need to work with generic image and when 
appliance configuration requires significant effort

● (Using CFEngine on the host and in the container makes 
sense usually for the labs and experimenting)



Container appliance (3)
● Some thoughts on how to set tags to container instances 

in the case when CFEngine client is in the container: 
− Simple way is to prepare tags as local files and mount 

them in containers (e.g. Docker)
− Option of fetching them in runtime via 

curl/wget/get_url() is do-able too (e.g. Docker labels via 
unix sockets but more complex than fetching AWS 
metadata)



Future improvements
● Checking existing against fetched files to improve security 

and avoid possibility to execute some rogue policy file 
found in autorun directory

● Developing (or extending) way to manage hub secondary 
repository via CFEngine portal (plugin) – only one JSON 
file on the hub shall be processed

● (Include update procedure via def.json)



Summary
● This extension enables relatively simple and clean deployment of policy files 

onto CFEngine client
● It follows convention and practices from CFEngine masterfiles policy 

framework and requires minimal change on it
● It makes policy files simpler and easier to develop, deploy and test
● It relaxes „selection“ logic in policy files by moving it out to selective 

distribution of those and it eases orchestration
● It is approaching idea of droplets (or linklets) where policy files and data could 

be dropped into subdirectory and automatically deployed



Thank you for your attention


