Extended update procedure

ldeas and thoughts around it

Based on my post in CFEngine blog called

Extending the CFENngine Policy Update Procedure

About me

jurica.borozan@gmail.com
https://juricaborozan.blogspot.com
https://github.com/jborozan/cfengine-repository/
https://cfengine.com/company/blog-detail/extending-the-cf
engine-policy-update-procedure

Google+ Jurica Borozan, twitter @juricaborozan

mailto:jurica.borozan@gmail.com
mailto:jurica.borozan@gmail.com

Masterfile library update procedure

e |tis reliable and optimized process
for distribution of policy files to the

1
i

A

clients — copies all files from hub I;l .

masterfiles to clients inputs - . :

directory é_% —— Y
e In heterogenous computing : .

. . AN | : N .
environment, coping the same —— ; —r
content to all clients might be .
undesired (or just difficult to & &

develop, test and scale)

JJI

i

Questions prior developing this
procedure

How to improve and optimize distribution of policy files
How to stay compliant/do minimal change to standard
master library

How to ease complexity of policy files content

How to improve development and test processes

How to support versatility of computer systems

How to prepare deployment or movement to cloud
infrastructure

This procedure

Is using ,autorun® feature on CFEngine clients

Is implemented with 2 extra policy files, one for clients update process and
one optional for hub!

Stays “compliant” with update procedure of mastefiles policy framework
Requires minimal changes to the files of masterfiles policy framework — (in
future possibly none)

Uses separate or secondary repository on the hub, which is different from
masterfiles (and not inside)

Relies on improved JSON support in CFEngine and it recommends concept
of separation executable code from data

Tagging

This procedure relies on usage of tags

Tags are flexible way to mark computing

resources e R
They are not limited by number or format, %pps
there can be as many as we wish (but do ==
not exaggerate)
They enable distinguishing and grouping <Ll
of computing resources (web, db, app1,

app2, etc.) - so it simplifies orchestration

IP address and hosthame are tags too

Appl3

Using tags on hub

Inside secondary repository there shall be set of
subdirectories named after tags

Obviously tag names shall be unique just like subdirectory
names

Each subdirectory shall contain set of policy files that will
be fetched by clients

When number of policy files grows it is recommended to
have some automated way to maintain these
subdirectories and files in them

Using tags on clients

Each CFEnNngine client fetches policy files from masterfiles
directory and from tag named subdirectory(ies) in
secondary repository

All the policy files from those subdirectory(ies) go to the
autorun subdirectory inside inputs directory

Limitation for the policy files names is that they shall be
unique to avoid overwriting

CFENgine client re-reads tags upon every run — so it could
change (dynamically) appliance of computing resources
on the run

Assigning tag to clients

e Obviously tags could be placed inside some file — which is
located outside masterfiles and inputs directories

e Or they could be fetched from somewhere via curl, wget
or CFENngine get_url (e.g. get meta data in AWS or
Openstack)

e \Which depends heavily on infrastructure and type of
services it provides

Policies and policy data

Separation of policies and data is recommended

This improves development and testing of policy files

It could simplify handling platform differences

| recommend to have each agent bundle in separate file
and to have correspondingly named data file
(JSON/YAML,) which is read at beginning

Whole feature resembles CFENngine design studio but it
tries to be simpler

This is optional — extension works with any type of policy
files containing bundles marked with “autorun” metatag

OoOo~NOOh WNRE

NBRRPRRERRpRRRPR
QOUoO~NOOUARWNERO

Polic

bundle agent =...>

{
meta:
"tags" slist => {
vars:

linux::

set input files fo
"params_files"

"params"

rm command
"cmd_dirs" slis

les and policy data (2

"autorun" 3};

r all bundles

slist => findfiles("$(this.promise_dirname)/$(this.bundle).json",
"$(this.promise_dirname)/$(this.bundle).yaml");

data => readdata(nth("params_files", 0), "auto");

t == { "/usr/bin", "/bin" };

"cmds" slist == { "rm" };

"cmd[$(cmds)]"

string => "$(cmd_dirs)/$(cmds)",

ifvarclass => fileexists("$(cmd_dirs)/$(cmds)");

Policies and policy data (3)

Optionally adding some naming conventions might
iImprove things even more

Nouns like mysqgl *.cf and firewall *.cf describe what is all
about

Verbs like * install.cf and *_init.cf do ease understanding
what is supposed to happen

It is better to avoid putting to much functionality inside
policy file — since it could become difficult to test and
debug

Client side implementation

There are 2 files:

— $(sys.inputdir)/jb_update_policy3.cf

— $(sys.workdir)/node.tags

Update policy file reads tags from second file each time
cf-agent runs it

Benefits on such dynamic behaviour is flexibility: adding
and removing tags controls fetching policy files on
updates

Hostname and IP address are included into tags
automatically

Client side implementation (2)

e In the first phase, update process goes as usual —
standard CFEnNgine procedure fetching content of
mastefiles directory and coping it to inputs

e Second phase is defined by extended update policy script
and it tries to fetch content of subdirectories (named after
tags) and copy them to autorun subdirectory

e Extended update policy script uses timestamps to check
changes and prevent to much network traffic on hub

Client side implementation

CFE Clientl: tagl, tag3, 1.2.3.4

CFE HUB /ﬁéé /var/cfengine/inputs/*
J J ﬂff /service/autorun/policyl.cf
/var/cfengine/masterfiles/* BQiT /policy2.cf
/repository/tagl/policyl.cf \ » /policy6.cf
/policy2.cf ? gf
/tag2/policy3.cf E / /policy5.cf
/policy4.cf N\ \ /
\ !
/tag3/policy5.cf a @f
. LA
/1.2.3.4/policy6.ct—1 \ CFE Client2: tag2, tag3, 2.3.4.5

1
/2.3.4.5/policy7.c£ | %%x%
x » /var/cfengine/inputs/*

/service/autorun/policy5.cf

g\xaﬁﬁ /policy3.cf

/policy4.cf
/policy7.cf

Hub side implementation

Option of manually maintaining secondary repository
directory structure is not recommended

Repeated coping of policy files and their data to
subdirectories is not effective and it is error prone
procedure

CFEnNgine does not follow symbolic links but using hard
links might be useful

| developed another policy file to maintain secondary
repository subdirectories and their content using hard
links

Hub side implementation (2)

There are some rules how my hub script link the files:

— There can be more source locations with policy files

— If the filename is prefixed with tag name, that one shall
be linked to certain subdirectory but without prefix —
this enables having tag specific policy and data files

All other non desired links and files must be removed from

subdirectories in repository

Timestamp shall be maintained to indicate changes of the

files and lessen network traffic

Hub side implementation

/var/cfengine/sourcedirl

policyl.cf
policyl.json

policy2.cf <
policy2.json

/wvar/cfengine/sourcedir?2
policy3.cf

> tagl_policy3.json
tag2_policy3.json

/var/cfengine/repository/tagl

policyl.cf
policyl.json

policy3.json

policy3.cf

/var/cfengine/repository/tag2

policy3.cf

policy2.cf
policy2.json

policy3.json

Hub side implementation

14
-4 "repository_dir" : "/var/cfengine/repository/cfengine”,
3
4 "policies_dirs" : [
5 "/var/cfengine/repository/policies/cfengine",
6 "/var/cfengine/repository/policies/security”,
7 "/var/cfengine/repository/policies/utilities™,
8 "/var/cfengine/repository/policies/databases™,
° "/var/cfengine/repository/policies/web",
10 "/var/cfengine/repository/policies/cloud",
=% "/var/cfengine/repository/policies/system"
12 1,
i3
14 "default" : [
15 "jb_user.cf",
16 "jb_user.json",
17 "jb_iptables_install.cf",
18 "jb_iptables_install.json",
19 B
20 "jb_vim.cf",
21 "jb_wvim.json"
22 1,
23
24 "tags" : {
25 "172.16.98.149" : [
26 "jb_firewalld_services_init.cf",
27 S
28 "jb_ssh_user_pubkey_login_setup.json"
29 1,
30
31 "172.16.98.214" : [
32 "jb_firewalld_services_init.cf",
33 "jb_firewalld_services_init.json",
34 Siate
35 jb_glusterfs_server_init.json"
36 1.
37
38 "172.16.98.130" : [
39 "jb_yum_repos_mysql_community.cf",
40 e
41 "jb_glusterfs_server_init.json"

S
w N
v
=

44 3

Managing secondary repository and
distribution of policy files - schema

Clientl: tagl, tag3

Source directories

Secondary repository

policy4.json
policy5.cf
policy5.json

icy2
policy2.gson

2 .json
tag2 policy4.json

. policy5.cf
pelicy5. json

Client3: tag2

“ - b= —
—————
13 5.cf f_—‘/, o
policyS. S
Polioys.Jeon Sy 7 policy3.cf
policy6.cf policy2.json eiiigalSeon
policy6.Jjson policy6.cf

= % policy4d.cf
policy6.json policy4d.json
policy5.cf
policy5.json

jb_setup_client_dirs.cf - =
jb_setup_client_dirs.json |jb_update_policy3.cf |

Cloud appliance

Question with cloud appliance is whether to use application prepared image
(e.g. for mysql, nginx) or CFEngine prepared image which later on takes care
of rest

CFEnNngine is “lite” — which makes it quite applicable inside prepared images
Obviously growing number of computer resources in cloud will require some
kind of configuration management or orchestration tool

CFENgine prepared images or generic ones could be setup for any purpose —
which is practical during development where changes are the rule, not
exception

Cloud appliance (2)

Most efficient would be to start with some image that has
CFENgine installed on it

But using user data file, CFEngine can be easily installed
at boot time (i.e. AWS, Openstack)

And user data file could be also used to write tags in the
tags file too

Alternative way is to assign tags to an instance would be
to fetched them using curl, wget or CFEngine get_url()
function during runtime

Cloud appliance (3)

Using Web based interface is good but tasks around
computer resources in cloud shall be automated

This implies using API or CLI for management (and GUI
for control)

E.g. Think of replicating some computer system of 100
nodes regionally (or for development, test and production)
CFEnNgine can help orchestrating resources

E.g. | use CFENgine to create, run, control and tag
computing resources on AWS via CLI

Container appliance

CFE HUB

3

i

e Similar to cloud appliance question is where to put
CFENgine client: inside or outside container

CFE HUB

CFE Client

Container 3

Container 1
Image 1 Image 3

Container 2
Image 2

Host node

Container 1
Image 1

//%\
/

T~

CFE Client

Container 3
Image 1

CFE Client

Container 2
Image 1

Host node

Container appliance (2)

Depends a lot on someone’s skills to prepare container
iImages (e.g. dockerfile) and skills to use CFEngine
Usual single appliance of container makes CFEnNgine
more applicable as container controller on the host
Putting CFENgine inside container makes sense in cases
when you need to work with generic image and when
appliance configuration requires significant effort

(Using CFENngine on the host and in the container makes
sense usually for the labs and experimenting)

Container appliance (3)

e Some thoughts on how to set tags to container instances

In the case when CFEnNgine client is in the container:

— Simple way is to prepare tags as local files and mount
them in containers (e.g. Docker)

— Option of fetching them in runtime via
curl/wget/get_url() is do-able too (e.g. Docker labels via
unix sockets but more complex than fetching AWS
metadata)

Future improvements

e Checking existing against fetched files to improve security
and avoid possibility to execute some rogue policy file
found in autorun directory

e Developing (or extending) way to manage hub secondary
repository via CFEngine portal (plugin) — only one JSON
file on the hub shall be processed

e (Include update procedure via def.json)

Summary

This extension enables relatively simple and clean deployment of policy files
onto CFENgine client

It follows convention and practices from CFEngine masterfiles policy
framework and requires minimal change on it

It makes policy files simpler and easier to develop, deploy and test

It relaxes ,selection” logic in policy files by moving it out to selective
distribution of those and it eases orchestration

It is approaching idea of droplets (or linklets) where policy files and data could
be dropped into subdirectory and automatically deployed

Thank you for your attention

