
2/9/2017 CFENGINE-LINDEN-IT-NET

http://www.cfengine.linden-it-net.de/tutorials/getset.html 1/9

Get set for getting work done by CFEngine

Sources:

Brian Bennets Primer: https://github.com/bahamat/cf-
primer
Nick Andersons Primer:
https://github.com/nickanderson/CFEngine-zero-to-hero-
primer
Neil Watsons Autorun-Primer:
https://digitalelf.net/2014/07/a-primer-on-cfengine-3-dot-
6-autorun

I changed and mixed them a bit to become a more practical
introduction and kept things out that are not important to get
started.

Introduction

Why did I start using CFEngine? I liked the idea of giving away
the control and all the detailled knowledge about the different
Linux distributions and instead just declaring a state and let
some software doing the rest.

CFEngine contains a powerful language for controlling all
aspects of a system. CFEngine runs primarily on UNIX und
UNIX like OS, but can run on Windows also. In this
presentation you will just learn a subset of what CFEngine can
do but this will show you how easy it is to get the most of the
work done.

If you have any question later or want a training on CFEngine
please feel free to contact me via info@linden-it-net.de

Let's start with the four components that make the piece of
software:

cf-agent
cf-monitord
cf-execd
cf-serverd

cf-agent

cf-agent is the command you will use most often. It is used to
apply policy to your system. If you are running any CFEngine
command from the command line, it will be cf-agent.

cf-monitord

It monitors various statistics about the running system and
makes this information available in the form of classes and
variables. You will almost never use cf-monitord directly. The
data provided by cf-monitord is available to cf-agent.

cf-execd

It's a periodic task scheduler and it takes care of the policies
getting run every five minutes by default.

2/9/2017 CFENGINE-LINDEN-IT-NET

http://www.cfengine.linden-it-net.de/tutorials/getset.html 2/9

cf-serverd

It runs on the CFEngine server as well as on all clients.

On a server it's responsible for serving files to clients.
On a client it accepts cf-runagent requests

cf-runagent allows you to request ad-hoc policy runs. I didn't
use it yet.

BIG Difference

.. in thinking and doing

Imperative vs. Declarative

By using CFEngine we don't tell the machine (or interpreter)
what it has or what we want it to do. We use the CFEngine
coding language to describe a state we want a system to have.
We just describe the state, we do not code how to get there. For
example a state can be:

The file /etc/motd contains the single line: "This server is
managed by CFEngine".
The apache webserver is installed
The apache webserver is running (and is getting restarted
if it crashed for some reason)
The httpd.conf is this or that or contains this or another
line or setting
The owner and group of the webserver directory is
webowner:webgroup

This method offers the possibility to detect any deviation from
this described and desired state + knowing what needs to be
done to transform the actual state to the desired state. Further
the process can start in any state, not just in a known one.
CFEngine uses convergence to arrive at the decribed state.
When a system has reached the desired state it is said to have
reached convergence.

Philosophy / Promise Theorie

Promise theory is the fundamental underlying philosophy that
drives CFEngine. It is a model of voluntary cooperation
between individual, autonomous actors or agents who publish
their intentions to one another in the form of promises. There is
an incredible deep and scientific background of CFEngine.
After six months I finished one-third of:

.. and it's absolutely thrilling!

2/9/2017 CFENGINE-LINDEN-IT-NET

http://www.cfengine.linden-it-net.de/tutorials/getset.html 3/9

There're other books of the CFEngine founder Mark Burgess
available as well like:

What makes promises?

A file (e.g., /etc/apache2/httpd.conf) can make promises
about its own contents, attributes, etc. But it does not
make any promises about a process.
A process (e.g., httpd) can make a promise that it will be
running. But it does not make any promises about its
configuration.
The configuration file and the process are autonomous.
Each makes promises about itself which cooperates
toward an end.

Anatomy of a Promise

type:
 context::
 "promiser" -> "promisee"
 attribute1 => "value1",
 attribute2 => "value2";

type is the kind of promise being made; e.g. files,
commands, packages, processes, services, storage, users,
..
context is optional; in the code there're classes/class
guards at this point acting like if/thens. Promises with this
context/class will only apply if the given context is true
resp. the given class is set -> see example below.
promiser is what is making the promise; e.g. a file, a
command, a package, a process, a service, a storage, a
user, ..
promisee is an optional recipient or beneficiary of the
promise; they are useful to generate reports about how
often a promise was run and what the outcomes have
been.

For this introduction I leave the promisee out; I use CFEngine
since 18 months and never used any promisee yet as reports
about separate promises were not requested by my employer.

Example of a Promise

files:
 sles.ipv4_10_4_1::
 "/etc/conf.file"
 create => "true",
 perms => mog("644","root","other");

The promise type is "files" and refers to the file "/etc/conf.file".
The promise is read by the cf-agent on the node and will only

2/9/2017 CFENGINE-LINDEN-IT-NET

http://www.cfengine.linden-it-net.de/tutorials/getset.html 4/9

apply if it's a SLES box (Suse Linux Enterprise Server) AND (.)
has an IPv4 address in the 10.4.1 subnet. If this is the case the
file will be created (for the case it doesn't exist yet) and the
permissions will be set to 644, the file owner will be "root" and
the file owning group will be "other". If the node is a redhat
box, even if it's the 10.4.1.10, the promise will not apply; same
if it's a SLES box but in another subnet, the promise won't
apply. If it's neither SLES nor has an IP in the given subnet it
won't apply either.

Promise Attributes

Each promise can have one or more attributes that describe the
parameters of the promise. The available attributes will vary
depending on the promise type. The value can be either a text
string (which must be quoted) or another object (which must
not be quoted). All attributes together are called the body of the
promise. Attributes are separated by commas. Each promise
ends with semi-colon.

Example of a Promise with another Object as
Attribute

files:
 sles.ipv4_10_4_1::
 "/etc/conf.file"
 create => "true",
 perms => mog("644","root","other")
 edit_line => check4value;

The edit_line attribute (and the perms attribute as well) is a
bundle (more about bundles in a minute) that is shipped with
any CFEngine package (Community and Enterprise) in its
library; just use it/them! "check4value" is a name I chosed for
my own object to call/use the edit_line bundle:

bundle edit_line check4value
{
 classes:
 "value_is_set" expression => regline("MyConfigValue: enabled", "$(edit.filename)");
}

With this object as attribute it's checked if "MyConfigValue:
enabled" is found in /etc/conf.file. As my object bundle is called
out of a files-promise the file which is promised about is being
placed in the special variable $(edit.filename), because this is
the file getting edited. If "MyConfigValue: enabled" is found in
the file the class resp. the context "value_is_set" is being set;
given that the node is a linux box.

The promise type in this edit_line bundle is "classes" and the
class "value_is_set" promises to be set if the given expression
evaluates to true. If not the class won't be set.

Given it's set, we can use this class/context for another decision.
Again: classes/context are the if/thens of CFEngine.

This is a bundle with just one (classes-)promise, but mostly...

Bundles

.. are collections of promises. It is a logical grouping of any
number of promises, usually for a common purpose. E.g. a
bundle to configure everything necessary for Apache to
function properly. Such a bundle might:

install the apache2 package (packages promise)
edit the configuration file (files promise)
copy the web server content (files promise)
configure filesystem permissions (files promise)

2/9/2017 CFENGINE-LINDEN-IT-NET

http://www.cfengine.linden-it-net.de/tutorials/getset.html 5/9

ensure the httpd process is running (processes promise)
restart the httpd process when necessary (processes
promise)

Anatomy of a Bundle

bundle type name
{
 type:
 context::
 "promiser" -> "promisee"
 attribute1 => "value1",
 attribute2 => "value2";

 type:
 context::
 "promiser" -> "promisee"
 attribute1 => "value1",
 attribute2 => "value2";
}

Bundles apply to the binary that executes them. E.g., agent-
bundles apply to cf-agent while server-bundles apply to cf-
serverd.

Bundles of type common apply to any CFEngine binary. For
now you will only create agent or common bundles.

Bodies

I stated before that the attributes of a promise, collectively, are
called the body. Depending on the specific attribute the value of
an attribute can be an external body. A body is a collection of
attributes. These are attributes that supplement the promise.

Anatomy of a Body

body type name
{
 attribute1 => "value";
 attribute2 => "value";
}

The difference between a bundle and a body is that a bundle
contains promises while a body contains only attributes.

Take a moment to let this sink in.

A bundle is a collection of promises.
A body is a collection of attributes that are applied to a
promise.

The distinction is subtle, especially at first and many people are
tripped up by this.

In a body each attribute ends with a semi-colon.

Abstraction and Re-usability

Bundles and bodies can be parameterized for abstraction and re-
usability. You can define bundles and bodies and call them
passing in parameters which will implicitly become variables.

An example will help:

bundle agent add_users
{
 methods:
 "create_users" usebundle => create_users("add_users.users");

2/9/2017 CFENGINE-LINDEN-IT-NET

http://www.cfengine.linden-it-net.de/tutorials/getset.html 6/9

 vars:
 # 1rst User
 "users[new_user1][uid]" string => "6666";
 "users[new_user1][description]" string => "NewUser1, Department, Company";
 # 2nd User
 "users[new_user2][uid]" string => "6667";
 "users[new_user2][description]" string => "NewUser2, Department, Company";
 # 3rd User
 "users[new_user3][uid]" string => "6668";
 "users[new_user3][description]" string => "NewUser3, Department, Company";

}

In this bundle we define the users in an array and call another
bundle via a method + passing the users-array in the call of the
bundle which will create the defined users. CFEngine iterates
over all elements in the array.

Here's the called bundle:

bundle agent create_users(info)
{
 vars:
 "user" slist => getindices("$(info)");

 classes:
 "add_${user}" not => userexists(${user});

 users:
 "add_${user}"::
 "$(user)"
 uid => " $($(info)[$(user)][uid])",
 policy => "present",
 description => "$($(info)[$(user)][description])",
 home_dir => "/home/$(user)",
 home_bundle => setup_home_dir("$(user)"),
 group_primary => "users",
 password => ThePassword,
 shell => "/bin/bash",
 classes => if_repaired("user_added");

 reports:
 user_added::
 "User $(user) was added.";
}

bundle agent setup_home_dir(user)
{
 files:
 "/home/$(user)/." create => "true";
}

body password ThePassword
{
 format => "hash";
 data => "jNKlcaMQIuqBY"; # "CFEngine" # generated via 'openssl passwd'
}

What happens:

vars: In the var "user" the indices of the array are stored:
new_user1, new_user2 and new_user3.
classes: a class "add_${user}" is added if the user doesn't
exist on the system.
users: Just if the class "add_${user}" is set
(add_new_user1, add_new_user2 or add_new_user3) the
user promise will be run. If the user already exists (the
promise was run before) nothing will happen.
reports: Just if the class "user_added" is set (it will just be
set if a user was added, look last line user-promise) the
report will be printed. Reports are printed into
/var/log/messages by default; they can be redirected into
a file as well.
If the users-promise is run the home_bundle attribute of
the users-promise-type will call the setup_home_dir
bundle with the users name as parameter. The
setup_home_dir-bundle will create the user's home
directory (The /. creates the directory).
Similar to the latter: If the users-promise is run the
password attribute of the users-promise-type will call the
the password-body. Remember: A body just contains
attributes that are applied to a promise. The password-
body is shipped with the library and it knows how to deal

2/9/2017 CFENGINE-LINDEN-IT-NET

http://www.cfengine.linden-it-net.de/tutorials/getset.html 7/9

with it. All I've to do is to paste my hash in as data value
which I generated using "openssl passwd CFEngine".
This will result in the initial password set to "CFEngine"
for the new user.

Running Bundles

To run a single bundle for testing purposes do:

cf-agent -KIf yourPromise.cf -b yourBundle

* -K remove any locks
* -I inform mode, show me what happened; -v is too much for short information
* -f for file and
* -b for bundle

Using the -b option you can run just one bundle for the case you
have several in your promise file.
We can define a bundlesequence using the -b option:

cf-agent -KIf yourPromise.cf -b bundle1,bundle2,bundle3

To run your whole policy:

cf-agent

That's it. To get an ouput:

cf-agent -v

This will run all your bundles.

Running bundles this way is not how it works in production.
How do we activate our bundles for the cf-agent? We have a
couple of choices:

1. /var/cfengine/masterfiles/promises.cf
2. via methods in main.cf
3. via meta-tags (autorun feature)
4. augment-/def.json-file

Which one is best to use depends on the environment and what
you want to achieve.

Using 1 or 2 you need to re-configure your promises and files
into the config-files after an upgrade.
Using the autorun-feature or the augment-/json-file (def.json)
makes your upgrades easier, because you don't need to touch
the masterfiles (MPF - Masterfiles Policy Framework), which
may change/get overwritten by an upgrade.

The autorun works using meta-tags. If you use in a promise:

bundle agent MyBundle
{
 meta:
 "tags" slist => { "autorun" };
...
..
}

.. this bundle will be run automatically by the cf-agent.

In the example I'm demonstrating we include our promise file
resp. bundle "security_bundle.cf" in the def.json which looks
this way:

[root@hub masterfiles]# cat def.json
{
"inputs": ["$(sys.workdir)/inputs/getset/security_bundle.cf"],
}

If we put all our policy files in the def.json there's no need to
touch the shipped masterfiles after an upgrade. Current versions
of CFEngine will check for a def.json (in
/var/cfengine/inputs/promises.cf).

2/9/2017 CFENGINE-LINDEN-IT-NET

http://www.cfengine.linden-it-net.de/tutorials/getset.html 8/9

This way it's ensured that the promise file will be found and
parsed BUT NOT actuated. To actuate it I use the following
/var/cfengine/inputs/services/main.cf:

bundle agent main
User Defined Service Catalogue
{
 vars:
 "bundles" slist => bundlesmatching(".*","security");

 reports:
 "I found security bundles: $(bundles)";

methods:
Activate your custom policies here
 "" usebundle => $(bundles);
}

This main.cf finds the security_bundle.cf tagged by "security":

bundle agent security_bundle
{
 meta:
 "tags" slist => { "security" };

 reports:
 "Hello from $(this.bundle)";
}

.. and runs it due to the method above. This way bundles can be
tagged and found by tag and fully dynamic bundle sequences
can be constructed.

The def.json file can contain your (global) defined classes,
variables (e.g. your ACLs) and input files, that are your
promises you want to get run by CFEngine's cf-agent.

Updating policies on the nodes (manually)

All couple of minutes the nodes check for promise updates on
the hub automatically. If you have new promises on the hub and
want to get them pulled by the nodes immediately do it by:

cf-agent -KIf /var/cfengine/inputs/update.cf -D validated_updates_ready

Debugging

There will be errors.. and w/o knowing where to look you are
lost. CFEngine has a -v (verbose) log and it's really a verbose
one. You can always initiate an agent run by "cf-agent -v". As
this is verbose indeed it makes sense to put that output into a
file by "cf-agent -v > /tmp/cf-agent.out". In this cf-agent.out
you can search for your bundle, for your classes and reports that
just get printed if a condition/class was set or not set.

If you wonder why this or that promise isn't run and you do
miss a result on your target node/s.. .. it's helpful to use reports
to see if your conditions resp. classes are set.

Important things to consider

Regarding the deployment of new nodes in "your" environment.
What is the best way to organize your nodes, means how to
identify them by classes? By ip, by network, by name, by
architecture, by OS, by any software installed? How will
CFEngine know: this new server is for this purpose (Webserver,
DB-Server, File-Server, for whatever department, ..) The
answer for this depends on the environment.

There are tricky ways to actuate bundles depending on the
existance of (hard or soft) classes.

2/9/2017 CFENGINE-LINDEN-IT-NET

http://www.cfengine.linden-it-net.de/tutorials/getset.html 9/9

What more is possible to do by u sing CFEngine

CFEngine has more power:

Virtualization / Guest Environments: Promise the
existence of virtual machines.
Storage: Promise local or remote (NFS) filesystems.
Database: Promise the schema of your database,
CFEngine does the SQL for your you.
Interfaces: Promise your network settings
Monitoring: Using data from cf-monitor.
Reporting: Report whatever, based on classes set or
unset: - A process/service running on which machines in
which network/s (set a class if a process crashes and
report this way how often a process crashes on what
systems) - What application is installed in what version
on what nodes. - .. uncountable possibilities, pretty easy
to set up

Reports can be written to files. CFEngine-Enterprise comes
with a GUI where reports can be created and shown graphically.

Support

For any questions contact me on: lindomatic@gmail.com or
reach the community at
https://groups.google.com/forum/#!forum/help-cfengine

